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SUMMýARY

The aimpoint algorithms being developed at Dr. Weight and
Associates are based on the concept of fuzzy logic (or fuzzy sets).
This approach does not require a particular type of sensor data or
algorithm type, but allows the user to develop a fuzzy logic
algorithm based on existing aimpoint algorithms and models. This
provides an opportunity for the user to upgrade an existing system
design to achieve higher performance at minimal cost.

Many projects have aimpoint algorithms which are based on "crisp"
logic rule based algorithms. These algorithms are sensitive to
glint, corner reflectors, or intermittent thruster firings, and to
uncertainties in the a priori estimates of angle of attack. If
these projects are continued through to a demonstration involving
a launch to hit a target, it is quite possible that the crisp logic
approaches will need to be upgraded to handle these important error
sources.

This study looked at applying fuzzy logic to the ASAT aimpoint
algorithm. The current baseline ASAT aimpoint algorithm is based on
a "crisp" logic rule based algorithm. The ASAT project is currently
considered to be at risk because the current baseline algorithms
ignore glint. This study investigated retro-fitting the current
baseline algorithms with fuzzy logic. The advantages of using fuzzy
logic according to our study appear to be:

1. Broadly Useful: Fuzzy logic can be effectively applied
to a broad spectrum of different type of sensors,
algorithms, and problems.

2. Speed: This approach to using fuzzy logic would push
all of the computationally intensive algorithms into the
non-real time code. The result is that the real time code
is extremely fast.

3. Timeliness: This approach can be developed into a
useful working tool fairly quickly.

4. Robustness: Fuzzy logic is model free. As a -, - -

consequence, fuzzy logic is insensitive to design errors A O.

and errors or uncertainty in the data being processed. i ,s C' RI

5. Accuracy: This study found that a factor of ten 0.. Ld
reduction in maximum aimpoint error resulted from the use
of fuzzy logic.

Currently, Dr. Weight and Associates is involved in a continuing
effort to produce a commercialiy marketable automated fuzzy logic
development system which is capable of supporting the development , •
of aimpoint algorithms for the ASAT, GBI, ERINT, E2 I, DEW, LADAR,
THAADS, Brilliant Pebbles, Brilliant Eyes, etc..

iii ... -



PREFACE

This report describes the fuzzy logic aimpoint feasibility study
and the software development undertaken at Dr. Weight and
Associates under the Phase I SBIR contract DASG60-93-C-0005
sponsored by the U.S. Army Strategic Defense Command.

A Critical need currently exists for efficient aimpoint algorithms
for kinetic energy weapons and for an effective automated tool to
support the development of aimpoint rules during high stress, time
constrained combat situations. In addition to aimpoints, there are
problems in RADAR multipath, robotic control systems, sensor
processing, and sensor fusion which can benefit directly from the
use of fuzzy logic. In order for the benefits of this technology to
be fully realized, the development of fuzzy logic will have to be
automated in the relatively near future.

Our study of fuzzy logic aimpoint algorithms required the
development of a generic data base of targets, and modelling the
selection of aimpoints using several approaches. The two baseline
ASAT aimpoint algorithms were compared to a human operator and to
fuzzy logic. As a result of the preliminary comparison, one of the
ASAT algorithms and the operator selection were rejected.

The fuzzy logic approach involves the use of existing crisp logic
rule based algorithms. These rule based algorithms are applied to
various scenarios involving factors such as glint and other sources
of error. Fuzzy logic is used to determine which and to what extent
each of these algorithms is to be applied. Fuzzy logic ends up
taking the centroid (weighted average) of the aimpoints produced by
the various rules. This centroid is seen to be much more accurate
on average then any of the individual algorithms.

One of our findings is that there is a critical need for an
automated approach to generating fuzzy systems. Current fuzzy
development systems are basically operator intensive tools somewhat
like a word processor: they are extremely useful but they do not
design the system for you. We are proposing to continue work on an
automated fuzzy development tool which will effectively support
current and future military and commercial requirements in
applications involving time critical, high pressure or combat
situations.

We have not been required to work in a vacuum on this project. In
addition to the several articles on the application of fuzzy logic
in general and on fuzzy control systems in particular, there is
much interest in both the public and private sectors. In
particular, there is a lot of interest in the application of fuzzy
logic to aimpoint algorithms. We would like to thank the managers
and engineers of Lockheed, Hughes, McDonald Douglas, TRW, and
espe, ally Rockwell International for their time and their valuable
suggestions.
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1.0 INTRODUCTION

The aimpoint algorithms being developed at Dr. Weight and
Associates are based on the concept of fuzzy logic. This approach
builds on and essentially replaces "crisp" rule based algorithms
with fuzzy rule based systems. This approach allows existing
projects to retrofit their current baseline aimpoint algorithms
with fuzzy algorithms at very little cost and risk.

The approach investigated uses existing algorithms which are
applied to a broad spectrum of image models. These image models
correspond to the various scenarios likely to be encountered on a
mission e.g. low, medium, or high glint off of various solar
panels. During an actual mission, image parameters are evaluated to
determine to what extent each scenario applies. The aimpoints
corresponding to each scenario are weighted and averaged to produce
a final aimpoint.

Some of the advantages of this approach are robustness, low risk,
and low cost:

a. Fuzzy logic is insensitive to many types of error
including modeling, and design errors. In fact fuzzy
logic has the important property that it is tolerant of
substantial deviations from the optimal membership
functions. The difference in the quality of the aimpoints
produced usii~g cftimal or suboptimal membership functions
are not substantially different. When we compared the
results using the optimal membership functions and
membership functions which are easily machine generated,
the difference was found to be small.

b. The approach to using fuzzy logic which was
investigated involves using the current baseline ASAT
aimpoint algorithm and applying fuzzy logic to it. This
approach has the advantage that the quality of the
aimpoints produced is at least as good as the baseline
algorithms. This reduces the design risk to where we have
essentially nothing to lose and everything to gain by
using fuzzy logic.

c. The fuzzy logic algorithms involve very little new
code and very little in terms of processor capabilities:
additional memory and throughput required are minimal.
The additional requirements are well within what are
considered reasonable design margins by modern systems
engineering standards.

Some of the disadvantages of this approach are the need for an
automated tool for the development of fuzzy systems and the
relatively advanced stage of development of many projects.

1



a. An automated tool for fuzzy system design is going to
be somewhat more sophisticated than the tool currently
envisioned to develop the ASAT aimpoint algorithms. The
current baseline algorithms tend to ignore issues like
glint and errors in angle of attack. As a result, these
algorithms are relatively simple and the procedure for
developing the aimpoint rules is also relatively simple.
The fuzzy logic approach does not ignore these sources of
error, and the tool for developing the aimpoint rules
will be that much more complicated.

b. The ASAT project is nearing that point at which it
will be locked into the current algorithm set. In order
to make substantial modifications to the baseline real-
time algorithms, these modifications will need to be
coded and tested within less than one year. This will
require the development of the real-time fuzzy logic
algorithms before that development tool is designed and
tested.

The basic goal of our Phase I research was to investigate the use
of fuzzy logic in the ASAT aimpoint algorithm. Section 2.0
describes, in some detail, the research and development efforts
expended by Dr. Weight and Associates to meet the Phase I technical
objectives and summarizes the important Phase I results.

Section 3.0 describes the objectives of the Pnase I contract. Under
the current contract, the following objectives were completed at
Dr. Weight and Associates:

a. Developed a data base of unclassified generic target
profiles and intensity maps. We selected the most
challenging target profile and used that for all of the
test cases. After some experimentation, we selected a non
standard point spread function. This has the advantage of
avoiding any possible issues with security. The target
profiles where converted into high resolution images
corresponding to targets at various ranges and various
aspect angles. These images were point spread and
converted into the low resolution images used for
analysis.

b. Modified existing fuzzy logic software tool. This
modification consisted of the inclusion of the ASAT
baseline algorithms. We experimented with both of the
baseline algorithms (extent and centroid) and settled on
the centroid algorithm for our study. This tool
ultimately produced several variations of the baseline
ASAT algorithms, with several point spread functions, and
with several fuzzy logic membership functions.

c. Developed display based scoring system. Software was

2



developed to display both the target profiles and the
images. The profiles and target trajectories were
verified using one of these tools. The images where
displayed in order to allow an operator to identify the
aimpoint. This approach was found to be hopeless and was
abandoned in favor of using the resources to investigate
automating fuzzy system development.

d. Collected and evaluated simulation data. Most of th(
data collected involved holding all put one parameter
constant. This was necessary because of the huge amount
of image processing necessary to build the final images
at ten different ranges. The results were plotted and
compared along with the membership functions, and the
Root Mean Square errors.

e. Investigated automating fuzzy system generation.
Current research publications were reviewed to determine
the various approaches. These approaches were analyzed to
determine their advantages and disadvantages. The results
of this effort were combined with the findings of our
research, and an approach was developed which seems.
optimal for our customers perceived needs.

Section 4.0 gives a statement of conclusions and recommendations.
We concluded that all project technical objectives were attained.
This project shows that fuzzy logic is a powerful technique when
applied to the problem of selecting aimpoints. It allows an
evolutionary approach to algorichin development which capitalizes on
the currently popular aimpoint algorithms. After reasonable
algorithms are developed, fuzzy logic is chen applied to provide
the features of robustness, high reliability, and high accuracy. We
have found that at extreme range the performance of the fuzzy logic
algorithms degrade to the performance of the crisp logic
algorithms, but at short range the fuzzy logic alcorithms are far
superior.

3



2.0 FUZZY AIMPOINT ALGORITHM STUDY

Dr. Weight a d Associates approach to using fuzzy logic in the ASAT
aimpoint alg. rithm has the capability of supporting a wide range of
commercial and military projects. By allowing the customer to use
their baseline crisp lcgic algorithms, this approach allows the
application of fuzzy logic to projects with a minimum of risk and
cost.

Our goal was to determine whether fuzzy logic could make a
substantial improvement in the performance of the ASAT aimpoint
algorithm in the presence of glint. In order to achieve this goal,
we started with a fairly accurate model of -he current ASAT
baseline algorithms and images. These allowed us to measure the
performance of the fuzzy logic algorithm relative to the ASAT
baseline. After showing that fuzzy logic could improve aimpoint
accuracy, it was then necessary to decermine whether fuzzy logic
would be practical from the stand point of being automatically
developed.

2.1 Generic Targets.

It was necessary to provide a database of targets which
represented a realistic cross section of reality. At the same time,
it was required to avoid any information which could be construed
as being classified. Finally, we settled on one target type which
hau the advantage of being the most error prone.

2.1.1 Three target types.

We considered three different target (see Figure 1) profiles with
different bodies, reflective surfaces, and supporting members.
After a little analysis it was determined that one profile offered
the advantage of being most sensitive to glint. This target profile
was used in all subsequent modeling and analysis. The target
selucted (target 1) has a relatively small body combined with two
long solar panels (see Figure 2).

Each target configuration was described in terms of rectangular
panels. Each target was allowed up to twenty different panels, and
each panel could be oriented in any direction. If part of any panel
is masked by some other panel then the masked part of the panel
contributes no energy to the image.

2.1.2 Trajectorv files.

Trajectory filrs were defined which describe the target ranges,
angles of attack, and glint. The trajectory file defines how many
images are to be formed, and each image corresponds to a different
range (see Figure 3) . An initial setting for the angle of attack
can be specified. Then for each image both the angle of attack and
the glint can be changed. The angle of attack is changed by

4



Target #1

Target #2

l Target #3

Figure 1: The three target profiles considered. Target
number one was used because it had the greatest
errors resulting from glint.
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Solar Panels

Body

Figure 2: The components of the target. We assumed
that the solar panels extending out the back of the
target would be highly spectural surfaces which could
be big glinting surfaces.
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filename TGT06321.TDF
5 number of surfaces

0.500000 0.500000 -0.500000 Rectangulai surfaces are defined
-0.500000 0.500000 -0.500000 which together define the surtace
-0.500000 0.500000 0.500000 of the target. Each rectangular
0.500000 0.500000 0.500000 surface is defined by four points

in three dimensional space.
0.500000 0.500000 -0.500000

-0.500000 0.500000 -0.500000 In addition to these target
-0.500000 0.500000 0.500000 surfaces, the aimpoint is also
0.500000 0.500000 0.500000 defined. This aim point allows

later software to determine
0.500000 0.500000 -0.500000 the errors computed by the

-0.500000 0.500000 -0.500000 various aim point algorithms.
-0.500000 0.500000 0.500000
0.500000 0.500000 0.500000 The three values (xrotyrotzrot

define the init. orientation of
0.500000 0.500000 -0.500000 the target: x,y, z are yaw, pitch,

-0.500000 0.500000 -0.500000 and roll respectively.
-0.500000 0.500000 0.500000

0.500000 0.500000 0.500000 The number of frames is the
number of pixel maps which will

0.500000 0.500000 -0.500000 produced. The number of images
-0.500000 0.500000 -0.500000 is the number of different

-0.50u000 0.500000 0.500000 intensity and orientations which
0.500000 0.500000 0.500000 will define the trajectory.

0.00 0.00 0.00 aimpoint Image, rotation,axes, and fcount
give the image number, the angle

10.0 -12.0 00.0 xrot yrot zrot of rotation, the axes of rotation
and the number of maps to be

1 number of frames from this image.

1 number of images Finally, surface and color give
surface number and its intensity.

1 0.000000 0 1 image rotation axes fcount

1 1 surface color
2 1 surface color
3 1 surface color
4 1 surface color
5 1 surface color

Figure 3: A Typical Target Trajectory File. This
file describes the target surfaces, and their
brightness. It also describes the number of frames
of image data to be produced and the sequence of
rotations to be applied to the target from frame
to frame.
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specifying deltas from the previous value, while the required glint
is simply specified. Glint is modeled by assigning an energy value
to each target panel. Each panel can be assigned a value between
one and fifteen independent of all other panels.

These trajectory files allow us to model targets through a series
of images. The first image may correspond to an extreme long range.
This long range can correspond to a target which covers a
relatively small fraction of a pixel before applying the point
spread function. A series of images are produced which represent
the target from acquisition to just before Kill Enhancement Device
(KED) deployment. At deployment of the KED, the target is an array
of approximately five by five pixels.

2.1.3 Software Tools (see Figures 4 and 5).

Several software tools were developed to help debug txle trajectory
files. The first tool merely displays three views of the target:
front, top, and side. This makes it fairly easy to verify the
target file description of the target configuration. In addition,
this tool displays each rectangular panel in the target in a
different color independent of glint. This makes it easy to
determine which surfaces are covered.

Another software tool displays the entire trajectory without
actually building the image file. This tool allows the operator to
review the trajectory and verify the image is correct in terms of
angle of attack, and glint. This tool was necessary because
actually building the image file was extremely time consuming -
approximately eight minutes per image.

2.2 Image Intensity Maps.

There are several factors which influence the images generated.
Because of limitations in time and resources, we decided to ignore
several important parameters. In particular, parameters which are
under the control of design engineers were for the most part
ignored e.g. the point spread function. In addition, given that the
signal to noise ratio gets extremely large closer to the target, we
ignore noise.

2.2.1 Point Spread Functions (see Figure 6).

Although we eventually focused on glint, we initially started an
investigation of point spread functions (PSF). This initial study
included a wide range of functions which involved very little to a
lot of blurring. It rapidly became clear that we could not include
PSF's in our parametric study. We quickly settled on a nonstandard
PSF which combined the two benefits of not being classified and of
providing sufficient blurring to allow sub-pixel resolution.

8
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0.036 0.120 0.036

0.120 0.378 0.120

0.036 0.120 0.036

Figure 6: We considered several point spread functions,
but we finally selected the one shown above. This point
spread function does not coincide with the ASAT PSF.
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2.2.2 Generating the images.

The images were generated using a commercial graphics package.
Initially, the images were formed on the computer screen. The
different levels of glint were represented by false colors. After
the image was formed then the pixels were allocated to various sub-
pixel bins. The "energy" in each bin was accumulated, and blurred
as defined by the programmable PSF. Finally, the total energy in
each pixel was accumulated for output to an image file as a
function of range.

2.2.3 Software tools (see Figures 4 and 5).

The tool which was developed accepts target description files and
produces images files. We used a brute force approach which
required very little programming effort, but which runs fairly slow
on our computer. It is totally automated so that we were able to
generate target image files during twenty hours runs while working
on other tasks.

2.3 Glint.

Glint was specified as a major concern in the solicitation topic.
As such, we addressed this issue first and in the most depth.
Images were collected and analyzed corresponding to a complete
range of glint coming of the "solar" panels.

2.3.1 Glint ranges (see Figure 7).

The target description file allows a dynamic range in the glint of
fifteen. While actual glint may far exceed this dynamic range, it
is adequate for our study. Graphs of the error generated by glint
shows that nearly the maximum amount of error is achieved at
approximately a factor of ten increase in the energy coming off the
solar panel as compared to the target body.

2.3.2 Glint off different surfaces.

In our study, we focused on glint coming off both of the solar
panels simultaneously. This is as opposed to glint off of one panel
or the other. The justification foe ignoring these other
combinations rests on the fact that at long range both panels
appear to be collocated. At short range, one panel has essentially
the same effect as an error in the angle of attack.

2.4 Automatic Fuzzy System Generation.

Most approaches to automatically generating fuzzy systems have
problems which are related to training or to requiring an operator
to predefine an initial system configuration. Although several
learning paradigms have been identified, almost all of the

12
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Figure 7: Justification for the range of glints used. The
error approaches its maximum fairly quickly. In other words,
it takes very little glint in order to cause the maximum
amount of error due to that source.
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algorithms identified relied exclusively on the neural network

paradigm.

2.4.1 Adaptive Fuzzy Systems.

Several approaches to automatic fuzzy system development are based
on neural network algorithms. This simply means that the learning
features of neural networks are modified and applied to fuzzy
systems. An example of this approach is described as adaptive fuzzy
systems. Adaptive systems are systems which modify themselves in
real-time to adapt to changing circumstances. This is actually more
general then our requirements call for. Our application would
simply call for applying a training set to the fuzzy system and
letting it adapt until is produced satisfactory results.

REF: Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall,
Englewood Cliffs, NJ, 1992.

Adaptive fuzzy systems have several problems. All approaches that
we studied required an initial fuzzy system to be defined by the
designer. This system was then modified in extremely limited ways
during the adaptive process. Typically, weights would be assigned
to each fuzzy rule. During the adaptive process the weights would
be adjusted but the rules and membership functions would be
unchanged.

A problem with most approaches based on neural networks is the need
for training. Typically, a training set is used to train the
system. This training process can be extremely time consuming. In
addition, this process can also be unreliable based on the quality
of the training set.

A further problem with neural network algorithms in general is that
often it is difficult or impossible to interpret the results. The
weights of the connections in the network usually do not correspond
in any obvious way to the real world. In addition, the is no "paper
trail" which allows replication or engineering review of the
results.

2.4.2 Neural Networks.

Many of the approaches to automating fuzzy systems are based on
neural networks. Almost invariably this means that the learning
algorithm associated with some neural network is used to train a
fuzzy system. More recently some researchers have developed neural
networks which correspond exactly to a fuzzy system. This
correspondence is a one-to-one mapping from the neural network to
the fuzzy system. Again this approach requires starting with an
initial neural network defined by the designer. Typically a back
propagation algorithm will then be used to train the neural network
and to produce the fuzzy system. This approach has the advantage
that training can be used to define the membership functions as
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well as weights on the fuzzy rules.

REF: S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On Fuzzy Modeling
Using Fuzzy Neural Networks with the Back-Propagation Algorithm,"
IEEE Trans. Neural Networks, Vol 3, pp. 801-806.

2.4.3 Basis Functions.

In this approach, a system of basis functions are defined which can
be combined to represent any membership function. Usually the basis
functions are restricted to be gaussian but this is not necessary.
The gaussian membership functions are then made to correspond to
neural network activation functions (actually two sigmoidal
activations functions represent one gaussian membership functions).
The result is a neural network which can be trained by adjusting
the slope and offset of these basis functions and adjusting various
weights.

REF: L. Wang, and J. M. Mendel, "Fuzzy Basis Functions, Universal
Approximation, and Orthogonal Least-squares Learning," IEEE Trans.
Neural Networks, Vol 3, pp.807-814, 1992.

2.4.4 Clustering Algorithms.

An approach to fuzzy rule generation is based on clustering
algorithms. In this approach, hyper dimensional vectors represent
the state of a system for several test cases. These vectors are
then normalized onto the unit sphere. These normalized vectors are
then clustered and each cluster is represented by a centroid
vector. This set of centroid vectors then defines the fuzzy rules
of the system.

REF: Kosko, B., Neural Networks for Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1992.

2.4.5 Computed Neural Networks.

Another approach is based on the idea of basis functions combined
with some insight gained from our Phase I research. Our research
has clearly shown that membership functions based on triangles are
general enough to provide near optimal results in this application.
In addition, it is almost certain that the rules and weights for a
fuzzy system can be directly computed. This would provide the big
advantage that training, which is extremely time consuming, would
not be required. In addition, although training images would still
be required, they could be generated by varying the parameters
which cause the most significant errors.

2.5 Manual Rule Generation.

The manual rule generation task was initially one of the greatest
areas of concern. We were worried that we would not be able to
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manual generate rules and membership functions which were ocod
enough. If the manual rules were not: good enough, we would not have
proven anything. Fortunately, fuzzy systems are robust enough tha•
the sub-optimal rules and membership functions (see Fioure 8) were
nearly as effective as the what was later seen to be the opt imria.
functions.

Our approach to generating the rules and membership function
provides an excellent model for an automated approach. We first
assumed the simplest types of rules, namely if <condition> then
<action> (see Figure 9) . The results of all of these rules were
then centroided to produce an aimpoint. The membership functions
were defined by varying parameters of interest and then Dust
looking at the surfaces produced (see Figure 10).

2.6 Manual Aimpoint Generation.

Initially it was felt that an human operator could provide a good
estimate of the aimpoint by visual inspection. We designed a simple
software tool which displays the image as squares of different
shades of grey. The idea being that an operator could examine this
image and extract an aimpoint. This approach failed for two
reasons. First, the resolution of the image was very low - too low
to allow an operator to find a reasonable aimpoint. In addition,
there were only three shades of grey to work with - the visual
effect was far from optimal.

2.7 Autonimtic ScL ing.

Software was written to convert the aimpoints computed into errors.
These errors were then processed through a MathCad program to
produce graphs and to compute RMS values.
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3.0 STATUS OF ACCOMPLISHMENTS

During this project, a study of the application of fuzzy logic to
the ASAT aimpoint algorithm was performed. The purpose of this
study was to determine if fuzzy logic could be effectively used to
reduce the effects of various error sources - especially glint. At
the completion of this study, we have produced a target simulation,
applied fuzzy logic to the simulated images, and analyzed the
results.

3.1 Develop target profiles and intensity maps.

This effort began with a definition of the planar surfaces of the
target. From there a multi-stage software development effort
resulted in programs to: generate a graphics image, translate the
image into sub-pixels, and combine sub-pixels into pixels. During
this process a point spread function was used to blur the image.
Other sources of noise were ignored because it was assumed that the
signal-to-noise ratio would be extremely high during the fina-
phases of the mission. The result of this effort was software
capable of supporting a parametric study of the fuzzy logic
aimpoint algorithm.

3.2 Modify existing fuzzy logic software tool.

Several pieces of software already existed which were useful for
this project.

For the purposes of comparison, it was necessary to implement the
baseline ASAT aimpoint algorithms. Both the "centroid" and the
"extent" algorithms were programmed and evaluated. The "extent"
algorithm was found to be unacceptable for our application. As a
consequence, only the "centroid" algorithm was carried forward for
further evaluation.

The fuzzy logic engine was modified to accept the test image
formats and was re-coded as a hardwired algorithm. This was
necessary because of the huge amount of processing required for the
image analysis and because of the large number of images generated
and processed.

3.3 Develop display based scoring system.

This objective consisted of two parts: the display and the scoring
system. The display was coded to allow an operator to view the
images and attempt to select an aimpoint. Unfortunately, the
resolution of the images is so low that it rapidly became clear
that an operator was not competitive with eveni the ASAT baseline
algorithms. This effort was abandoned with the resources redirected
into the investigation of automated fuzzy system generation. The
scoring system turned out to be a series of MATHCAD programs which
analyzed and plotted the results.
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3.4 Collect and analyze performance data.

The process of generating the simulated target images required
almost a hundred hours of computing time. While this did not burn
up much engineering time, it did limit the types of analysis that
we could perform. Because of time constraints, it become necessary
to abandon two equally interesting scenarios: glint off just one
panel, and errors in the a priori estimate of the angle of attack.
After a little analysis, it became obvious that these two scenarios
are almost identical from the point of view of algorithms.

The results of the two panel glint study shows that with glint
uniformly distributed over the range from no glint to maximal
glint, there is approximately a factor of ten reduction in maximum
aimpoint Error. Figures 11 and 12 show a substantial reduction in
aimpoint errors for the near and medium range cases. As might be
expected, the long range case shows considerable problems with both
approaches (see Figure 13).

3.5 Future research and development.

Although fuzzy logic is not commonly used in the United States, it
is very popular in other parts of the world. There is a large body
of research in this area and many topics of potential future
research have been identified. Two of these research topics are of
particular interest: basis functions and hybrid fuzzy logic/neural
network systems.

Basis functions appear to be an excellent way to approach
automating the development of fuzzy systems. It appears to be
relatively easy to compute basis functions automatically. These
computed basis functions have been shown, in our Phase I study, to
be reasonable substitutes for optimal basis functions.

Building hybrid fuzzy logic/neural network systems appear to have
several advantages. These advantages include the possibility of
avoiding the time consuming need to train neural networks. In
addition, expert knowledge, which can easily be mapped into a fuzzy
system, can now be mapped into neural networks.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions.

4.1.1 Fuzzy logic will reduce maximum error.

The current baseline ASAT aimpoint algorithms do not appear to be
designed to handle glint or errors in the a priori estimates of
angle of attack. Our analysis shows that these baseline algorithms
can be modified to be incorporated into a fuzzy system. In
addition, we have seen that this fuzzy system can reduce the
maximum error in the aimpoint by a significant factor. This factor
will of course depend on the target being attacked.

4.1.2 Fuzzy logic is robust.

Our research showed that fuzzy logic is robust in several different
but important ways. While it is tolerant of uncertainties in the
image under analysis, it is also tolerant of errors in the design
of the fuzzy system. In this case, the error in the design was the
use of sub-optimal membership functions.

4.1.3 Fuzzy logic can be fast.

Our preliminary estimates showed that the real-time part of the
fuzzy system will be quite fast. This results from the fact that
most of the processing would be performed just prior to launch.

4.1.4 Timely development of Fuzzy logic.

For near term projects (e.g. ASAT), it is vitally important to have
the real-time software designed, coded, and tested in the near
future. The real-time part of the fuzzy system code is simple
enough that it could be designed quickly. In addition, the real-
time code could also be designed first, before t,- non real-time
code. This would allow a parallel development effo>: requiring only
the interface definition.

4.1.5 Automating Fuzzy System Development.

It is possible to automate the development of fuzzy systems. Our
analysis shows that, at least for this application, we will be able
to effectively use certain properties of the underlying problem to
great advantage. Not only are we able to use triangular membership
functions but the membership functions are derived from simple
multi-dimensional surfaces. This means that simple fuzzy rules can
be combined to produce an extremely accurate aimpoint estimate.

4.1.6 Underlying algorithm needs to be continuous.

Fuzzy systems are continuous. This means that inputs that are close
produce outputs that are close. One of the baseline ASAT aimpoint
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algorithms was found to be discontinuous. This was unacceptable
from our point of view and would probably by undesirable from the
perspective of the ASAT Guidance and Control system.

4.1.7 Target needs to be blurred.

In order to achieve sub-pixel resolution it is necessary to have
significant blurring. Clearly, if all of the target energy is
contained within a single pixel, sub-pixel resolution is
impossible. The problem with blurring is that it would reduce
acquisition range. While this could possibly lead to a trade-off
during the early design phase, at this point in the ASAT design the
hardware is cast in concert.

4.2 Recommendations.

4.2.1 Need automated development system.

For many important military applications, and some commercial
applications it will be necessary to automate the development of
the fuzzy systems. During missions such as ASAT, there is
insufficient time between selecting a target and launching an
interceptor for the manual design of a fuzzy system. Of course this
comes as no surprise because even the crisp logic rule based system
development will need to be automated.

4.2.2 Errors in angle of attack.

Glint is widely recognized to be an important issue. Perhaps less
widely recognized is the effects of errors in the a priori
estimates of angle of attack. Our research shows that even a
relatively small error in angle of attack can result in a serious
reduction in probability of kill. For example, glint has been seen
to cause significant errors. Fortunately, with these errors, the
aimpoint is still contained within the target. Errors in the angle
of attack, especially when combined with glint, on the other hand
can cause the aimpoint to shift completely off of the target
leading to a clean miss.

4.2.3 Computing neural networks.

One of the most serious problems associated with neural networks is
that they need to be trained. Another problem is that once they are
trained it is cften impossible to analyze the connection weights
and derive any understanding of the underlying problem or solution.
Fuzzy logic can help solve both of these problems. Several
researchers have developed one-to-one mappings between certain
classes of fuzzy systems and neural networks. Since these two
representations are equivalent, it becomes possible to use the
benefits of both. Neural networks can be used to design fuzzy
systems through training; fuzzy systems can be designed to directly
compute connection weights for neural networks. Fuzzy systems have
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the advantage that they are often extremely intuitive and therefore
it could be relatively easy to determine the physical meaning of
neural network connection weights by looking at them in a fuzzy
context.

4.2.4 Investigate hybrid systems.

Fuzzy systems also have the advantage that they interface naturally
with both neural networks and crisp logic rule-based systems. This
suggests possibly forming an integrated package which includes an
expert system for operator input, an neural network for complex
analog data, and a fuzzy system to integrate or fuse the system.
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5.0 POTENTIAL FOR COMMERCIALIZATION

There is a tremendous potential for commercializing fuzzy logic in
the United States. In Japan, fuzzy logic has been in use for years,
and it has been successfully applied to thousands of consumer
products. Successful commercial applications include controlling
water levels in washing machines, navigating river barges, and
smoothly stopping high speed trains.

5.1 Selling aimpoint algorithms.

Aimpoint algorithms are important to several projects at the
Strategic Defense Command e.g. GBI, THAADS, ERINT, DEW, E-I,
PATRIOT, GSTS and LADAR. Many programs are having problems
identifying aimpoint algorithms, and this appears to be a serious
factor influencing probability of kill. In addition, many
applications require very high degrees of accuracy in their
aimpoint algorithms. The results of this study show a factor of ten
reduczion in maximum aimpoint errors resulting from the use of
fuzzy logic.

5.2 Selling automated development tools.

Automatic tools for generating fuzzy systems could serve a critical
need in the military. In the commercial world, automated tools
could reduce the skill levels required of fuzzy system designers;
this reduction in skill level would translate into potential
increases in productivity and big savings. In addition, third party
vendors (TOGAI InfraLogic) are interested in the possibility of
combining their hardware with an automated fuzzy system development
tool.

5.3 Selling fuzzy logic and neural network expertise.

Fuzzy logic is relatively unknown in the United States, and fuzzy
system expertise is in demand. Since starting this contract, we
have been asked to apply our fuzzy logic and neural network
expertise to such problems as passive ranging (GBI), active damping
control systems (BE), radar multipath (MTAS), and vehicle
classification systems (DOT).
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filename: ARULES
This program accepts a pixel map and computes
the ASAT aim point rules.

# include <math.h>
# include <graph.h>
# include "worlddr.h"
# include <stdio.h>
# include "plot3d.h"
# include "hpplot.h"
# include tlstdlib~hl

FILE *pixelmap; /* pixel map *
FILE *aptrules; /* asat aimpoint rules
long map[lO] [10];
char nameO[201; /* test file name *
char namel[201; /* pixel map file name
char name2 [20]; /* asat aimpoint file name ~
int num -maps;
int map-no;
int api,apj;
int aptop, apbottom;
int apright..apleft;
long maxsum,minsum;
mnt top,bottom, right, left, temp;
float rhoc.,rhor;
float cenc,cenr;
long jsum,isuxn,tsuin;
float jcen,icen;

/* Compute the ASAT intensity centroid aimpoint rules ~

void Centroid(void)

mnt jr,ic;

isum = 0;
jsum = 0;
tsum = 0;
for(jr=0;jr<10;jr++)

for(ic=0;ic<10;ic++)
temp =map ijr] ic];
if (temp != 0){

jsum += temp*jr;
isum += temp*ic;
tsum += temp;

if(tsurn > 0)
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icen = ((float)jsuxn)/((float)tsum);
icen = ((float)isum)/((float)tsum);

else{
jcen =-10
icen =-10

/* convert aimpoint rules to pixel coordinates *

jcen = 22.0 + (jcen-2.0)*40.0;

icen = 7.0 + (ic(-n-) *80.0;

cenc = ((float)api) - icen,
cenr = ((float)apj) - 3cen;
fprintf(aptrules," cenc = %f cenr %f\n",cenc,cenr);

/* compute the ASAT extent aimpoint rules *

void Putjup_ýbox(void)

int jr,ic;
top = 10;
bottom -1
right=-;
left =10;

for(jr=0;jr<10;jr-i+)
for(ic=C;ic<l0;ic++){

temp = maptiri [ic];
if (temp !=0) {

if(j*r<top) top = jr,
if(jr>bottom) bottom =jr;

if(ic<left) left = ic;
if(ic>right) right =ic;

/* convert aimpoint rules to pixel coordinates *

aptop 22 + (top-2) *40;
apbottom = 21 + (bottom-i) *40;
apleft = 7 + left *80;
apright = 6 + (right+l) *80;
rhoc = ((float) (api - apleft))/((float.)(apright - apleft));
rhor = ((float) (apj - aptop))/((float)(apbottom - aptop));
fprintf(aptrules,"\n rhoc =%f rhor = %f",rhoc,rhor);
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/* read pixel map ~

void LoadMap(void)

mnt jr,ic;
fscan~f~pixelmap," %d map number" ,&.Llap~no);
fscanf(pixelmap,1' %d %d aimpoint',,&api,&apj);
fork~r=O;jr<lQ;jr++)

fur(ic=O;ic<lO;ic++){
fscanf(pixelmap," %d"',&map~jrl [ic1);

fscanf (pixelmap, "\n");

f scanf (pixeimap, 1 %ld %ld maxsuxrt and minsma" , &maxsuin, &minsum);

void main(int argc,char *argv[]){
int mm;
char s[80];

/* read in file -.ames *

if(argc<3)(
printf("This program requires a PMP and a ARL");
printfi" file name in the command line.\n");
getch o;
exit (0)

strcpy~namel .argv[l]);
if((pixelmap = fopen(namel,"r")) == NULL)

print -("Could not open f ine grain pixel map (%s) \n", ni--,ýl);
getch(o;
exit (0)

strcpy(name2,argv[2]);
if((aptrules = fopen(name2,1w"l)) == NULL)

printf ("Could not open asat aimpoint rules (%s) \n",name2);
getch()
exit (0)

fscanf(pixelmap, 'filename %s",s)-
tprintf(aptrules, "filename %s\n" ,name2);
fscanf(pixelmap," %d number of maps',&numnmaps);

/* compute ASAT aimpoint rules ~

f or (im=O ;im<num -maps; im++){
LoadMap o;
PutUpBox o;
Centroido;

fclose(pixelmap);
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filename: CFUZZY
This program accepts a pixel map and computes
the fuzzy aim points.

# include <math.h>
# include <graph.h>
# include "worlddr.h"
# include <stdio.h>
# include 'plot3d.h'"
# include "hpplot.h"
# include "stdlib.h"

FILE *pixelmap; /* pixel map *

FILE *lowrules; /* low aimpoint rules
FILE *medrules; /* medium aimpoint rules
FILE *highrules; /* high aimpoint rules
FILE *fzyrules; /* fzy aimpoint rules
FILE *aimpts; /* fuzzy aimpoints *
long map[l0] [101;
char nameO[201; /* test file name *

char namel[20]; /* pixel map file name
char name2 [20]; /* asat aimpoint rule name *

char na~me3[20]; /* asat aimpoint file name ~
mnt num-maps;
int map no;
mnt api,apj;
mnt aptop, apbot torn;
mnt apright,apleft;
long maxsum,minsum;
mnt top,bottom, right, left,temp;
float rhoc,rhor;
float lcenc, lcenr,mcen~r,mcenc,hcenr,hcenc;
long j sum, isum, tsurn;
float jcen,icen;
float fapi,fapj;
float rho,rhot, lrho,mrho,hrho;

/* compute FUZZY aimpoint rules ~

void Fuzzy(void)

int jr,ic;
mnt flag;

isuxn = 0;
isum 0;
tsum = 0;
for(jr=0;jr<l0;jr++){

for(ic=0;ic<10;ic++)
temp =map[ Jr]I[ic I
if (temp,! 0){
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jsiuir += temp*jr;
isuin += temp~ic;
tsurn += temp;

ifitsuin > 0)
iceri = ((float)jsuxn)/((float)tsuin);
icen = ((float.)isuin)/((floatjtsuin);

else{
jcen = -1.0;
icen = -1.0;

icen = 22.0 + (jcen-2.O)*4O.O;
icen = 7.0 + (icen) *80.0;

rho =
((float)tsuin-(float)minsum)/( (float)maxsum-(float)minsum);
/* apply fuzzy rule number "flag" *

flag = 2;
switch(flag){

case 0: /* traditional rules ~
if(rho<=0.0)(

lrho = 1.0;
mrho = 0.0;
hrho = 0.0;

if((0.00<rho)&&(rho<=0.1O)){
lrho = 1.0 - 10.0*rho;
mrho = 10.0*rho;
hrho = 0.0;

if((0.10<rho)&&(rho<=0.30))
lrho = 0.0;
mrho = 1.0;
hrho = 0.0;

if((0.30<rho)&&(rho<=0.50)){
lrho =0.0;
mrho = 1.0 - 5.0*(rho-0.30);
hrho = 5.0*(rho-0.30);

if(0.50<rho){
irho = 0.0;
rnrho = 0.0;
hrho = 1.0;

break;
case 1: /* optimal rule *

if(rho<=0.0) I
lrho = 1.0;
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mrho = 0. 0;
hrho = 0. 0;

if((0.00<rho)&&(rho<=0.25))
lrho = 1.0 - 4.0*rho;
mrho =4.0*rho;
hrho = 0.0;

if((0.25<rho)&&(rho<~=0.50)) f
irho = 0.0;
rnrho = 1.0 - 4.0*(rho-0.25);
hrho = 4.0*(rho-0.25);

if(0.50<rho){
lrho = 0.0;
mrho = 0.0;
hrho = 1.0;

break;
case 2: /* automated rule ~

if(rho<=0.0)
irho = 1.0;
mrho = 0.0;
hrho = 0.0;

if((0.00<rho)&&(rho<=0.30)){
rhot = (0.30 - rho)*(0.30 -rho) /0.09;
irho = rhot;
rnrho = 1.0 - rhot;
hrho = 0.0;

if((0.30<rho)&&(rho<=0.50))
rhot = (0.50 - rho)*(0.50 -rho) /0.04;
lrho = 0.0;
mrho =rhot;
hrho = 1.0 - rhot;

if(0.50<rho)
lrho =0.0;
mrho = 0.0;
hrho = 1.0;

break;

fapi = icen + lrho*lcenc+mrho*mcenc+hrho*hcenc;
fapj = jcen + lrho*lcenr+mrho*mcenr+hrho*hcenr;
fprintf(aimpts,"a %d %di %f %f \n\n",api,apj,fapi,fapj);

/* load pixel map ~
void LoadMap (void)
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int j r, ic;

fscanf(lowrules," rhoc =%f rhor =%f cenc = %f cenr =%f-
&rhoc, &rhor, &lcenc, &lcenr);

fscanf(medrules," rhoc = %f rhor = %f cenc = %f cenr = %"
&rhoc, &rhor, &mcenc, &rcenr);

fscanf(highrules," rhcoc =%f rhor = %f cenc = %f cenr %f"
&rhoc, &rhor, &hcenc, &hcenr);

fscanf(pixelmap," %d map num~berll,&map~no);
fscanf(pixelmap," %d %d aimpointl',&api,&apj);
for(jr=O;jr<lO;jr++)

for(ic=O;ic<1O;ic++)
fscanf(pixelmap," %d",&map[jr] [ic]);

fscanf(pixelmap, "\n"-);

f scanf (pixelmap, 1 %ld %ld maxsum and minsum", ,&raxsum, &rnnsum);

void main(int argc,char *argv[]){
int im;
char s[801; /* read in file names ~

if(argc<7)(
printf("This program requires an FRL, PMP, FPT and a lmh APT");

prin~tf(" file name in the command line.\n");
getch o;
exit (0)

strcpy(namel,argv[l]);
if((fzyrules = fopen(namel,"r"l)) == NULL){

printf("Coiild not open the fuzzy aimpoint rules (%s)\n"l,namel);
getch o;
exit (0);

I
strcpy(name2,argv[212);
if((pixelmap = fopen(name2,"r'")) == NULL)

printf("Could not open test pixel map (%s)\n",name2);
getch o;
exit (0)

strcpy(name3,argv[313);
if((aimpts = fopen(name3,llw")) == NULL)

printf ("Could not open fuzzy aimpoint file (%s) \nl, name3);
getch ()
exit (0)

strcpy(name3,argv[4]);
if((lowrules = fopen(name3,11r")) == NULL)(

printf("Could not open lo asat aimpoint file (%s)\n",name3);
getch C)
exit (0);
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strcpy(name3,argv[5]);
if((medrules = fopen(narne3,"r")) == NULL)

printf("Could not open med asat aimpoint file (%s)\n",name3);
getch o;
exit (0)

strcpy(name3,argv[6]);
if((highrules = fopen(name3,"r")) == NULL){

printf("Could not open hi asat aimpoint. file (%s)\n",name3);
getch o;
exit (0)

fprintf(aimpts, "filename %s\n",name3) ;
fscanf(pixelmap,"filename %s",s);
fscanf(lowrules, "filename %s",s);
fscanf(medrules, "filename %s",s);
fscanf(highrules, "filename %s"l,s);
fscanf(pixelmap," %d number of maps",&numjnaps);
fprintf(aimpts, "\n %d number of maps\n\n",num-maps);

/* compute fuzzy aimpoint rules *
f or (im=0; im<num -maps; im++){

Load - ap o;
Fuzzy ();

fclose (pixelmap);
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filename: DISP
This program accepts a test pixel map and displays it.

#*nld <ahh

# include <mrath.h>

# include "worlddr.h"
# include <stdio.h>
# include "plot3d.h"
# include 'hpplot.h'
# include "sdibh

FILE *pixelmap;
char name0[20];
char namel[20];
long map~lO] [10];
char title[80];
mnt num-maps;
int map-no;
int api,apj;
long maxsum, minsuin;
/* display pixel map ~
void Displayap (void)

mnt i,j,il.,jl;
int row, col, color;
float temp;
int templ, temp2, temp3;
int colornum;

for(j=0;j<l0;j++){
for(i=0;i<10;i++){

temp = (float) map[j][i];
temp = temp/3200.0;
colornurn 1;

tempi = (int) ((0.34- 0.33*(temp - 5.0)/5.O)*(32767.0));
temp2 = (int) ((1.00- 0.33*(temp - 5.0)/5.0)*(32767.0));

if(temp<=5.0){
colornum = 0;
tempi = (int) ((.0 - 0.66*temp/5.0)*(32767.0));

else{
if (temp>=lQ.) f

colornum = 2;
temp2 (iUnt) ((0.33 + 0.66*(temp - 0.0)/5.0)*(32767.0));

/* color each pixel ~
row = i*56;
for(il=0;il<56;il++){

row++;
col = j*28+15;
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for(jl=O;jl<28;jl++)
col++;
ternp3 = rando; /* select random mix of *

/* colors to represent intensity *

switch.(colornum)
case 0:

if(ternp3<templ) _setcolor(0);
else _setcolor(7);
break;

case 1:
ifitemp3<templ) _setcolor(O);
else (

if(temp3>temp2) _setcolor(15);
else _setcolor(7);

break;
case 2:

if(temp3<temp2) _setcolor(15);
else -setcolor(7);
break;

_setpixel (row, col);

void Load~ap(void)
( /* read in pixel map ~
int jr,ic;

fscanf(pixelmap,"1 %d map number",&map no);
fscanf (pixelmap," %d %d aimpointII,&api,&apj);
for(jr=0;jr<10;jr-s+){

for(ic=0;ic<lO;ic++)
fscanf(pixelmap," %dII,&map[jr] tic]);

fscanif(pixelmap, "\n");

f scanf (pixelmap, " %ld %ld maxsum and minsun" , &maxsum, &minsum);

void main(int argc,char *argv[]){
int im;
char s[80]; /* read in file names *

if(argc<2)(
printf("'This program requires a test");
printf(II file name in the command line\n");
getcho(;
exit(0);

strcpy(namel,argv~l] )
if((pixelmap = fopen(namel,"r")) ==NULL)t
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printfU"Could not open pixel map (%s)\n",namel);
getch o;
exit (0)

_setvideomode (ERESCOLOR);
fscanf (pixelmap, "filename %s",title);
fscanf(pixelmap," %d number of maps",&num -maps);
for(im=0;im<num~maps;im++) { /* display images *

LoadMap o;
DisplayMapo~;
getchoC;
_clearscreen (GVIEWPORT);

CloseSEGraphics o;
fclose(pixelmap);
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filename: MKASAT
This program accepts a pixel map and computes
the ASAT aim points and errors for plotting.

# nld <ahh

# include <mrath.h>

# include "worlddr.h"
# include <stdio.h>
# include tplot3d.h"
# include "hpplot.h"
# include "stdlib.h"

FILE *pixelmap; /* pixel map *
FILE *aptrules; /* asat aimpoint rules
FILE *allpts; /* all aimpoints *
long map[l0] [10];
char name0[80]; /* test file name *
char namel[80]; /* pixel map file name
char name2[80]; /* asat aimpoint rule name ~
char name3 [801; /* asat aimpoint file name ~
char name4[201; /* all aimpoint file name ~
mnt num-maps;
int map~no;
int api,apj;
int aptop, apbot tom;
mnt apright,apleft;
long maxsum,minsuxn;
mnt top, bottom, right,left, temp;
float rhoc,rhor,cenc,cenr;
long j sum, isum, tsum;
float jcen,icen;
float fapi,fapj;
float erout[101;
float jbc,ibr,jcc,icr,erb,erc;
double dcc, dcr, dpc, dpr, dnm;
double dtempl, dtemp2, dtemp3;
/* compute the intensity centroid and compute aimpoint *
void Centroid(int nuin-maps,int& im)

mnt jr,ic;

isum =0;
isum = 0;
tsum =0;
for(jr=0;jr<10;jr++)

for(ic=0;ic<10;ic++)
temp = map[jr] [ici;
if (temp !=0) (

jsum +~= ternp*jr;
isum += temp*ic;
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tsum += temp;

if(tsuxn > 0){
jcen = ((float)jsuin)/((float)tsurn);
icen = ((float)isum)/((float)tsum);

else{
jcen = -1.0;
icen =-1.0;

1/* convert to pixel coordinates *
jcen =22.0 + (jcen-2.0)*40.0;
icen = 7.0 + (icen) *80.0;

dcc = icen + cenc;
dcr = cen + cenr;
dnm = (float) (num maps - im);
dpc = (double) api;
dpr = (double) api;
dtempl = pow((dpr-dcr)*dnm,2.0);
dtemp2 = pow((dpc-dcc)*dnm,2.0);
dtemp3 = dtempl + dtemp2;
erc = (float) pow(dtemp3,0.5);
erout[im] = erc;

void LoadMap (void)
{ /* read pixel map ~
int jr,ic;

fscanf(aptrules," rhoc = %f rhor =%f cenc =%f cenr %f
&rhoc, &rhor, &cenc, &cenr);

fscanf (pixelmap," %d map number" ,&map-no);
fscanf (pixelmap," %d %d aimpoint" ,&api,&apj);
for(jr=0;jr<1O;jr++)

for(ic=0;ic<10;ic+-s)
fscanf(pi-'xelmap, " %d'",&map[jr] [ic]);

fscanf(pixeimap, "\n");

f scanf (pixelmap,"1 %ld %ld maxsum and minsuxn", &maxsurn, &iinsun);

void main(int argc,char *argv[])(
mnt im; /* read in file names ~
char s[80);

if(argc<3)
printf("This program requires an ARL, and PMPI);
printf("I file name in the command line.\n");
getch()
exit(0);

strcpy(namel,argvfll]);
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if((aptrules = fopen~namel,"r")) == NULL){
printf("Could not open the asat ailnpoint rules (%s)\n"',name1);

getch C)
exit (0)

strcpy(name2,argv [2]);
if((pixelmap = fopen(name2,"r"l)) ==NULL){

printf("Could not open test pixel map (%s)\n",name2);
getch();
exit (0)

if((allpts = fopen("g:temp2.tmp",,"W")) ==NULL){
printf("Could not open temporary file\n");
getch C)
exit (0)

fscanf(pixelmap, "filename %s",s);
fscanf(aptrules, "filename %s",s);

fscanf(pixelmap," %d numiber of maps",&num -maps);
f or (im=0; im<numjnaps; im++) j / compute ASAT aimpoi nt errors ~

Load - ap o;
Centroid(num-maps,im);

for(im=num. Tmaps-l;im>=0;im--){
fprintf(allpts, " %f",erout[im] )

fprintf(allpts, "\n\n");
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filename: MK FRN
This program accepts the fuzzy aimpoint lists,
computes the errors and formats the data
for plotting with mathcad.

#*nld <ahh

# include <mrath.h>

# include "woriddr.h"
# include <stdio.h>
# include 11plot3d.h"
# include "1hpplot.h"
# include "stdlib.h"

FILE *aimpts; /* asat aimpoints *
FILE *fzypts; /* fuzzy aimpoints *
FILE *manpts; /* manual aimpoints *
FILE *allpts; /* all aimpoints *
long map [10] [10] ;
char nameO[20]; /* test file name *
char namel[20]; /* asat aimpoint file name ~
char name2[20]; /* fuzzy aimpoint file name ~
char name3[20]; /* manual aimpoint file name ~
char name4[20]; /* all aimpoint file name ~
int num -maps;
int map-no;
float erout[20];
float jbc,ibr,jcc,icr,erb,erc;
double dcc,dcr,dpc,dpr,dnm;
double dtempl, dtemp2 ,dtemp3;

void ComputeError(int maps,int im)
{ /* compute fuzzy aimpoint errors ~
mnt ipc,ipr;

dnrn = (float) (maps - im);

fscanf(aimpts," %d %d %f %f",&jpc,&ipr,&jcc,&icr);
dcc = (double) icc;
dpc = (double) jpc;
dcr = (double) icr;
dpr = (double) ipr;
dtempl = pow((dpr-dcr)*dnm,2.0);
dtemp2 = pow((dpc-~dcc)*dnm,2.O);
dtemp3 = dtempl + dtemp2;
erc = (float) pow(dtemp3,0.5);
erout[im] = erc;

void main(int argc,char *argv[1){
int im; /* read in file names *
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char s[803;
if(argc<2)

printf("This program requires an F'PT file in");
printf(" the command line.\ri');
getch o;
exit (0)

strcpy(nanie0,argv[l]);
if((aimpts = fopen(name0,"r")) == NULL) j

printf ("Could not open f uzzy aimpoints f ile (%s) \n", name0);
getcho;
exit (0)

if((allpts = fopen("g:temp,2.tmp","w")) == NETLL!
printf("Could not open temporary file\nl);
getch o;
exit (0)

fscanf(aimpts, "filename %s,namel);
fscanf(aimpts," %d number of maps",&num maps);
for (im=0; im<numjnaps; im-s+){

ComputeError (num maps, im);

for (im=num~maps-l; im>=O; im--)
fprintf(allpts, ' %f",erout[im] )

fprintf(allpts, "\nn");
fflush(aimpts);
fclose(aimpts);
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filename: MK_MAP
This program accepts a test target description
file and outputs test pixel maps.

#define MAXIMAGES 100
#define MAXSURFACES 10
# include <math.h>
# include <graph.h>
# include "woriddr.h"
# include <stdio.h>
# include I"plot3d.hbl
# include "hpplot.h"

int eri
int color;
struct Worl~dRect wr;

floac. xY,yZ;
float rot [MAX IMAGES] ,xrot,yrot,zrot;
mnt axn [MAXIMAGES] ,colorno [MAX-SURFACES] [MAX IMAGES];
int font [MAXIMAGES];
float p[41[3][MAXSURFACES];
float apx,apy,apz;
int api,apj;
int no-images,no surfaces,no_frames;
int ol-f-cnt,frame_cnt;
long tempsum[56] [56];
float te'npspread[80] [80];
FILE *tdffile;
FILE *pixelmap;
FILE *noisemodel;
char name0[20];
char namel[20];
char name2[20];
char name3 [20];
float coefs'3];

void DrawAndSaveAimPoint(void){
stru,.t point3D pv[5];
mnt i,j; /* draw airnpoint of target ~

pv[0] .x = apx;
pv[0].y = apy;
pv[0].z = apz;
pv[l] .x = apx + 0.05;
pxr1l].y = apy;
pv~l].z = apz;
pv[2].x = apx + 0.05;
pv[21.y = apy + 0.05;
pv[2).z = apz;
pv[3].x = apx;
pv[3].y = apy + 0.05;
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pvlI3].z =apz;
pvII4].x =apx;
pvlI4].y = apy;
pv[4] .z = apz;
SelectColor Cl);
PolyFill3D(pv, 1, 1, 5)
api = -1;
apj = -1;
for(i=0;i<560;i++)

for(j=0;j<280;j++)
if(-getpixel(i,j)==1)

api = i
apj = j
break;

if(api!=-1) break;

vc'id DrawTarget(int image...no)
struct poirit3D pvlj5];
Jmt isf,ipt;
/* draw image of target *

for(isf=0;isf<no-surfaces;isf++)
for(ipt=0;ipt<4;ipt±+)(

pv[iptl .x =pfipt] [0] [1sf];
pvliptl .y = pliptl [1] [isf]l
pv[i*ptl .z = p~ipt] [2] [1sf]:I

pv[43 .x = p11[01 [I~sf];
pv[4] .y = p[0 [1] [1sf];
pv[4] .z = p[O] [2] [isfl;

SelectColor(colornoliisf] [image~no]);
PolyFill3D(pv,1,colorno[isf] [image~no],5);

void LoadTargets (void)
{ /* read target description file *

int im,is,ip;
int image, surface;

fscanf(tdffile," %d number of surfaces",&no-surfaces);

for(is=O;is~no-surfaces;is++)
for(ip=0;ip<4;ip++)f

fscanf(tdffile," %f %f %f",
&p[ip] [0] [is] ,&p[ip] [1] [is] ,&p[ip] [2] [is]);

fscanf(tdffilej %f %f %f airnpoint",&apx,&apy,&apz);
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fscarif(tdffile,'" %f %f %f xrot yrot zrot%,&xrot,&yrot,&zrot);
worldRotate3 (xrot,0);
WorldRotate3 (yrot, 1);
WorldRotate3 (zrot, 2);

fscanf(tdffile," %d number of frames",&no_frames);

fprintf(pixelmap,,"\n%d number of maps\n" no-frames);

tscanf(tdftile,' %d number of images",&nojrnages);

for (im=Q; im<nojrniages; im++) {
fscanf(tdffile," %d %f %d %d image rotation axes fcount,L"

&image,&rot[im] ,&axn[im] ,&fcntiim]);
for(is=0;is<no-surfaces;is++)I

fscanf(tdffile,' %d %d surface color'",&surface,&colorno(iSj [im]i,

void PSF(int rl,int cl,int r2,int c2,float coef)
{/* point spread function */

if((r2>=0)&&(r2<56)&&(c2>=0)&&(c2<56))
tempspread[rlJ [cl]+=coef* ((float) ternpsum[r21 [c2l}

void Savemap(int image~no)
{/* compute and save pixel map *

int ic01,jr01, ic02,jrO2, icO3,DrO3;
long sum,maxsurn,minsum;
mnt jrow0l, icol~l, jrow02, icolO2;
int row,col,pix;

fprintf (pixelmap, "\n%d map number\n" ,image~no);
fprintf (pixelmap, "\n%d %d aimpoint\n\n"l,api,apj);
maxsum = 0;
minsum = 0;
for(jr~l=0;jr~l<7;jrOl++)

for(ic~l=0;ic~l<7;ic~l±+)
for(ic02=0;ic02<8;ic02+-+){

for(jrO2=0;jrC2<8;jrO2++)
sum = 0;
for(icO3=0;icO3<10;icO3++)

for(jrC3=O;j2vO3<5;jrO3++)
col = (ic~l*8+icO2)*10+icO3+0 +7;
row = (jr~l*8+jrO2)*5 +jrO3+15 +7;
pix = _getpixel(col,row);
if(pix > 0)(

sum += pix;
maxsum += 15;
minsum~ += 1;
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tempsum[jr0l*8+jrO2][ic0l*8+icO2] = sum;
}

I
}

}
for(jr01=0;jr01<10;jr01++)

for(ic0l=O;ic0l<10;ic0l++)
for(ic02=0;icO2<8;icO2++)

for(jr02=0;jrO2<8;jrO2++)
icolol = ic0l*8+ic02;
jrow0l = jr0l*8+jr02;
tempspread[jrow0l] [icol0l] 0;
for(ic03=-4;icO3<4;icO3++)

for(jr03=-4;jrO3<4;jrO3++) {
jrow02 = jrow0l-16+jrO3;
icol02 = icol0l+ic03;

PSF(jrow0i,icol0l,jrow02 ,icol02 ,coefs[O]);
PSF(jrow0l,icol0l,jrow02-8,icolO2 ,coefs[11);
PSF(jrow0l,icol0l,jrow02,icolO2-8 ,coefs[l]);
PSF(jrow0l,icol0l,jrow02+8,icol02 ,coefs[ll ;
PSF(jrow0l,icol0l,jrow02,icolO2÷8 ,coefs[l]);
PSF(jrow0l,icol0l,jrow02-8,icolO2-8,coefs[2]);
PSF(jrow0l,icol0l,jrow02-8,icol02+8,coefs[2]);
PSF(jrow0l,icol0ljrow02+8,icolO2-8,coefs[21);
PSF(jrow0l,icol0l,jrow02+8,icol02+8,coefs[2]);

I
I

I
I

I
}
for(jr0l=0;jr0l<10;jr0l++)

for(ic0l=0;ic01<l0;ic01++) {
sum= 0;
for(ic02=0;icO2<8;icO2++) {

for(jr02=0;jrO2<8;jrO2++) {
sum += (int)
floor(tempspread[jr0l*8+jrO2] [ic0l*8+icO2]+0.5);

I
I
sum = sum/64;
fprintf(pixelmap,"%51d ",sum);

I
fprintf(pixelmap,"1\n");

I
fprintf(pixelmap, "\n%51d %51d maxsum and minsum\n",maxsum,minsum);
I
void main(int argc,char *argv[]) {
int im,ifc;
float scale; /* read in file names */

if(argc<4) {
printf("This program requires a .TDF, .PMP, and .NSE");
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printf(" file in the command line\n");
getch()
exit (0)

strcpy(namel,argv[ll);
if((tdffile = fopen(namel,"r")) == NULL){

printf ("Could not open test target description file As) \n",namel);
getch o;
exit (0)

strcpy(name2,argv[2 1);
if((pixelmap = fopen(name2,11w")) == NULL) f

printf("Could not open pixel map %s\n,,,name2);
getcho;
exit (0)

strcpy(name3,argv[3]);
if((noisernodel = fopen(name3,11r")) == NULL){

printf("Could not open noise model %s\n".,name3);
getcho;
exit (0)

fscanf(tdffile, "filename %sll,name3);
fscanf(noisemodel, "filename %s" ,name3);
fscanf(noisemodel," %f %f %f",&coefs[01,&coefs~l],&coefs[2J);
fprintf(pixelmap, "filename %s\n",,name2);
tInit3(); /* set up graphics *
Init3D (6);
SetWorldCoordinates(-lO.0,-10.0,l0.0,10.0);
LoadTargetsoL;
frame-cnt = 0;
old f cnt = 1;
if (no frames > 0){

scale = (l.0/(float) no_frames);
WorldScale3 (scale, scale, scale);
for (im = 0; im < no -images; im++){

for(ifc = 0; ifc < fcnt(im]; ifc++)
frame -cnt++;
scale = ((float)frarn~e-cnt/(float)old-f-cnt);
WorldScale3 (scale, scale, scale);
WorldRotate3 (rot [im , axn [imD);
if (frame -cnt <= no-frames) {

_clearscreen(_GVIEWPORT);
DrawAndSaveAirnPoint o;
-clearscreen (GVIEWPORT);
DrawTarget (im);
add-noise();
SaveMap(frame_cnt);

old-f-cnt = frame_cnt;
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else printf(I"error - number of frames = O\n"a);
Close3DGraphicso(;
fclose(tdffile);
fclose (pixelmap);
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filename: P_AIMPTS
This program accepts an aimpoint list and
computes the errors for plotting.

#*nld <ahh

# include <mrath.h>

# include "worlddr.h'
# include <stdio.h>
# include "plot3d.h'
# include "hpplot.h"
# include "stdlib.h'-

FILE *aimpts; /* asat aimpoints *
FILE *fzypts; /* fuzzy aimpoints *
FILE *manpts; /* manual aimpoints *
FILE *allpts; /* all aimnoints
long map[101[lO];
char name0[20]; /* test file name
char namel[20]; /* asat aimpoint file name ~
char name2 [20]; /* fuzzy aimpoint file name ~
char name3[20]; /* manual aimpoint file name ~
char name4[20]; /* all aimpoint file name ~
mnt numnmaps;
mnt map-no;
float erout(lO3[l01;
void ComputeError(int maps.,int tim)
(I /* compute ASAT aimpoint errors ~
mnt jpc,ipr;
float jbc,ibr,jcc,icr,erb,erc;
double dbc,dbr,dcc,dcr,dpc,dpr,dnm;
double dtempl, dtemp2,dtemp3;

dnn =-1,f loat) *(maps - im);

fscanf(aimpts," %d %d %f %f %f %f",&jpc, &ipr, &jbc, &ibr, &j cc, &icr);
dbc = (double) jbc;

dcc = (double) jcc;
dpc =(double) jpc;
dbr = (double) ibr;
dcr = (double) icr;
dpr = (double) ipr;
dtempl = pow((dpr-dbr)*dnxn,2.0);
dtemp2 = pow((dpc-dbc)*dnm,2.0);
dtemp3 = dtempl + dtemp2;
erb = (float) pow(dtemp3,0.5);
dtempl = pow((dpr-dcr)*dnm,2.0);
dtemp2 = pow((dpc-~dcc)*dnm,2.0);
dtemp3 = dtempl + dtemp2;
erc = (float) pow(dtemp3,0.5);
eroutjim} [0] = erb;
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eroutjiml [1] = erc;

void main(int argc,char *argv[]l{
int im; /* read in file name ~
char S[80];

if(argc<3)
printf("This program requires a test,,);
printfC"I file name in the command line.\n");
getch o;
exit (0)

strcpy(namel,argv[l]);
if((aimpts = fopen(namel,"r")) == NULL){

printf("Could not open asat aimpoint file (%s)\n"',namel);
getch();
exit (0)

strcpy(name2,argv[21);
if((allpts = fopen(name2,"w")) == NULL){

printf("Could not open all aimpoint file (%s)\n',name4);
getcho;
exit (0)

fscanf(aimpts, "filename %s",s);
fscanf(aimpts," %d number of maps",&numjnaps);
f or (im=0; im<num..maps ;im++)(

ComputeError(num maps, im);
}/* compute ASAT aimpoint errors ~

for(im=num -maps-l;im>=0;im--)
fprintf(allpts," %f %f\n\n",erout[im] roherout[im] [1]);
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f ilename: SHOW
This program accepts a target description
file and outputs image.

#dfn*AIAE 0
#define MAX_IMRAGES 100
#deinc ue <MAXS RF CE 1
# include <mrath.h>

4 include '"worlddr.h'
# include <stdio.h>
# include "plot3d.h"
# include "hpplot.h"

mnt err,i,j;
mnt color;
struct WorldRect wr;

float xIyIz;
float apx,apy,apz;
float rot [MAXIMAGES] ,xrot,yrot,zrot;
mnt axn [MAXIMAGES] ,colorno[MAXSURFACES] [MAX-IMAGES];
mnt fcnt [MAX IMAGES];
float p[4] [3] [MAXSURFACES];
int nojimages, no~sur faces, no_frames;
int old -f_cnt,frame~cnt;
FILE *tdffile;
char nameO[201;
char narnel[20];

void add-noise (void)
I

return;

void DrawTarget(int no_surf ,int image-no,int frame~no){
struct point3D pvII5];
mnt isf,ipt;
/* draw image of target ~

for(ipt=0;ipt<4;ipt++)(
pvlipt] .x = plipt] [01 [isf];
pvlipt] .y = plipt] [11 [isf];
pv[ipt] .z = p[ipt] [21 fisf]I

pv[43 .x = p[01 [0] [isf];
pv[41 .y = p[0] [1][isf];
pv[41 .z = p[0] [2] [isf];

SelectColor(colorno[isf] [image~no]);
PolyFill3D(pv,l,colorno[isf] [image-no],5);
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void LoadTargets (void)
( /* read target description file ~
int im,is,ip;
nt. image, surface;

char title[80];

fscanf(tdffile,"~filename %s\n",title);

fscanf(tdffile, "%d number of surfaces\n",&no-surfaces);

for(is=O;is<no-surfaces;is++) {
for(ip=O;ip<4;ip++) {

fscanf(tdffile,"%f %f %f\n"',
&p[ip] [0] [is] ,&p[ip] [1] [is] ,&p[ip] [2] [is]);

fscanf(tdffile,"%f %f %f aimpoint\n",&apx,&apy,&apz);

fscanf(tdffile," %f %f %f xrot yrot zrot",&xrot,&yrot,Szrot);
WorldRotate3 (xrot, 0);
WorldRotate3 (yrot, 1);
WorldRotate3 (zrot, 2);

fscanf(tdffile, "%d number of frames\n",&no-frames);

fscanf(tdffile, '%d number of images\n" ,&no_images);

for (im= ; im<no.Jmages; im++)(
fscanf(tdffi~le,"\n%d %f %d %d image rotation axes fcount\n",

&image,&rot[im] ,&axn[im] ,&fcnt[im]);
tor(is=0;is<no-surfaces;is++)

fscanf --dffile, "\n%d %d surface coior\n", &surface,
&colorno[is] [im]);

void main(int argc,char *argvt]){
mnt im,ifc;
float scale; /* read in file names ~

if(argc<2) (
printf("This program requires a test"');
printf(" file name in the command line\n");
getch C)
exit (0)

strcpy(namel,argvjll]);
if((tdffile = fopen(namel,"rfl)) == NULL){

printf("Could not open target description file (%s)\nII,namel);
getch ()
exit(0);
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tlnit3 (
Init3D(6)
SetWorldCoordinates(-lO.O,-1O.0,1O.OlO.O);
LoadTargets 0;
frame-cnt = 0;
old-f cnt = 1;
if(nojframes > 0){

scale = (1.0/(float) no-frames);
WorldScale3 (scale, scale, scale);
for (im = 0; im < no -images; im++){

for(ifc = 0; ifc < fcntfim]; ifc++)
-clearsereen (_GVIEWPORT);
frame -cnt++; /* display image sequences *
scale = ((float)frame-cnt/(float)old-f-cnt);
WorldScale3 (scale, scale, scale);
WorldRotate3 (rotfim] ,axnflim]);
if(frame-cnt <= no-frames) (

DrawTarget (no-surfaces,im,frame~cnt);

old -f-cnt = frame-cnt;
getch ()

else printf(Ilerror - number of frames =~")

Close3DGraphicsoC;
fclose(tdffile);
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filename: SHOW 3
This program accepts a test target description
file and outputs three views.

#define MAX_IMAGES 100
#define MAX_SURFACES 10
# include <math.h>
# include <graph.h>
# include "worlddr.h"
# include <stdio.h>
# include "plot3d.h"
# include "hpplot.h"

int err,i,j;
int color;
struct WorldRect wr;

float xIyIz;
float apx,apy,apz;
float rot[MAX_IMAGES];
int axn [MAXJIMAGES , colorno [MAY SURFACES] [MAX IMAGES);
float p[4][3][MAX_SURFACES];
int no -surfaces;
FILE *tdffile;
char name0[201;
char namel[201;
/* draw image of target ~
void DrawTarget(int no_surf,int image~no)t
struct point3D pvjj5];
mnt isf,ipt;

for(isf=0;isf<no -surf;isf++)

pvlipt] .x = plipt] [0] [isf]I
pvlipt] .y = plipt] [11 [isf];
pv[iptl .z = p[ipt] [2] [isf];

pv[4] .x = p[0] [01 [isf];
pv[41 .y = p1101 [1] Iisf];
pv[41 .z = p[0] [2] [isf];

SelectColor(isf+l);
PolyFill3D(pv,l,isf-i-,5);

void LoadTargets (void)
{ /* read target description file ~
mnt is,ip;
char title[80];

fscanf(tdffile, "filename %s\n",title);
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fscanf(tdffile, "%d number of surfaces\n",&no surfaces);

for(is=0;is<no_surfaces;is++)
for(ip=0;ip<4;ip++)J

fscanf(tdffile,'%f %f %f\n',
&p[ip] [0] [is] ,&p[ip] [1][is] ,&p[ip] [2][is]);

II

void main(int argc,char *argv[]) J
int im,ifc; /* read file names ~
float scale;

if(argc<2){
pri4ntf("This program requires a target");
printf(" description file name in the command line\n');
getch o;
exit (0)

strcpy(namel,argv[l]);
if((tdffile = fopen(namel,"r"l)) == NULL){

printf("Could not open target description file (%s)\n",namel);
getch ()
exit (0)

LoadTargets(); /* setup three D views ~
rot[0] = -90.0;
axn[01 = 1;
rot[l] = 90.0;
axn[l] = 1;
rot[2] = 90.0;
axn[2] =0;
tlnit3 ();
Init3D)(6);
SetWorldCoordinates(-l0.0, -10.0,10.0,10.0);
for (im = 0; im < 3; im-i+) ( /* draw three views of target ~

_clearscreen (GVIEWPORT);
WorldRotate3 (rot tim] ,axnlim]);
DrawTarget (no_surfaces,im);
getch ()

Close3DGraphics o;
fclose(tdffile);
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